(888) 339-3006


Grinding Strategies Go from Good to Great

Maybe your company specializes in aerospace or medical components, and you need to produce complex geometries in metals too tough to cut via conventional machining methods. Or maybe you work in or own a tool and cutter shop, and are looking for faster, more cost-effective ways to produce drills, end mills, and form tools. Whatever the reason, and whatever the requirement, you’re in luck. As with most metalworking technologies, grinding—more properly called abrasive machining—has improved greatly in recent years.

How so? For starters, grinding wheel manufacturers have developed new bonds and superabrasives
that clearly deserve the title “super,” capable of removing more material in less time than ever before. And grinding machine manufacturers are delivering ever more capable equipment, rigid and powerful enough to take full advantage of those advanced abrasives, while adding smart features like automation, remote monitoring and intelligent software systems to their machine tools.

Simply put, grinding has entered a new era of productivity and part accuracy; if you’re not taking advantage of it, you could be missing out on significant opportunities for process improvement, increased product quality, and a boost in the bottom line.

Better Control is Critical

A key driver for this is a shortage of qualified machinists. That’s according to Shane Farrant, national product manager for grinders at JTEKT Toyoda Americas Corp., Arlington Heights, Ill., who added that making the human-machine interface (HMI) easier to understand is a necessary first step towards minimizing the effects of a less-skilled labor force.

“A simpler, more intuitive HMI is one of the many machine enhancements we’ve developed for our lineup of universal, cylindrical, camshaft, and crankshaft grinding machines,” he said. “This means a user-friendly format, with greater reliance on pictures and other graphics to aid setup and programming procedures.”

There’s also been a big push towards an Internet of Things-based (IoT) working environment. For example, the diagnostics page on Toyoda’s TOYOPUC touch control displays coolant levels, machine vibration, oil temperature—anything that might translate to poor part quality or create a production issue will send an immediate alert to whoever’s responsible for fixing it. In addition, it’s possible to collect this information from the machine control and push it to a networked database for historical analysis.

Another timesaving feature is the automatic generation of alternative programs, which an operator can call up if there’s a process-related problem. JTEKT Toyoda Proposal Engineering Manager Steve Earley said this conversational control option is available on the company’s GE6 roll grinder, a machine that has also benefited from some modifications to the casting, motors, and other components, all designed to reduce vibration and increase machine accuracy in this specialty application.

The materials used to make the lithium batteries used in electric vehicles are quite thin, he explained, and the rolls producing this material must therefore be extremely accurate, with very fine surface finishes. “When an operator is setting up the machine, the control will present a generalized program to start with, as well as two alternates—one that’s more aggressive for faster cycle times, and a more conservative program that produces better surface finishes,” Earley said. “Based on the initial results, the operator can easily decide to switch to whichever set of machining parameters provides the best part in the shortest time possible.”

Original Source: https://www.toyoda.com/